	Tanta Ur	niversity
	Faculty of Science	
	Physics Department	
	Examination of Level 2	
	Physics and Material Science Programs	
1969	Course Title: Electromagnetic Theory I	Course Code: PH2151
1	Date:10-1- 2017	1 st Semester

The first question (30 marks): -

Put $(\sqrt{})$ for the right sentences and (x) for the incorrect sentences, then correct it.

- 1. Gauss's law relates the electric flux through the closed surface to the charge inside it.
- 2. The divergence theorem relates the volume integral to the closed line integral.
- 3. The operation on the potential **V** by which -**E** (electric field intensity) is obtained, known as divergence.
- 4. The work expended in carrying a positive charge in an electrostatic field between two points depends on the path taken between them.
- 5. The magnitude of E is given when the direction of the distance increment is in the same direction of E.

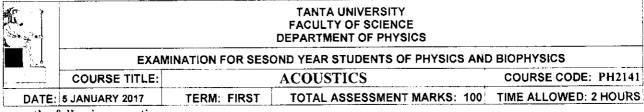
The second question:

- a- Prove that in an electric dipole the potential field is proportional to the inverse square of distance and the electric field intensity is proportional to the inverse cube of the distance (20 marks).
- b- Transform the vector field $\vec{G} = (XZ/Y)\vec{a}_y$ in Cartesian coordinate system to a spherical system (20 marks).

The third question:-

- a- Find the work done in carrying the positive charge q near an infinite line charge: first about a circular path, second about a radial path changing from ρ =a to ρ =b (25 marks).
- b- If $\overline{E}=(5r*10^{-5}/\varepsilon_0)\overline{a}_r$ N/c in the region $r\leq 2$ m in spherical coordinate system, find the volume charge density ρ_v , then find the net charge q in the region r=2 m (15 marks).

The forth question: -


- a- Use Gauss's law to find the density of electric flux \bar{D} for infinite sheet with surface charge density ρ_s C/m² (10 marks)
- b- Calculate the energy stored in the electrostatic field in the system consists of three equal charges 4 μc put on the three corners of trigonal with equal sides, each side equal 0.5 mm (30 marks).

(ϵ_0 is the permittivity of free space = $(1/36.\pi)$ * 10^{-9} F/m)

U QUALITY ASSURANCE UNIT

9

مزيار + فزيا وسي

Answer the following questions

	Answer the following questions			
	FIRST QUESTION	(25 marks)		
A	- Choose the correct answer:			
	(20 marks)			
	Stiffer bonds between molecules (increase - decrease) the pressure exerted by a mo	plecule of speed c.		
	When the impedance mismatch is very large, the reflection is (low – high).			
	In A-mode imaging, the (frequency - amplitude) of returning echoes is recorded.			
4-	The application of ultrasound waves generates electrical signals depend on the (am of the incident waves.	iplitude – pressure)		
5-	The string under greater tension has a (greater – lower) wave speed.			
6-	والمعملة لاحقاد والمناف المناف	is,		
7-	Reflections that undergo scattering are called (defuse - specular) reflection.			
	The energy transferred to a medium when a sound wave propagates through it causes (attenuation – vibration) to the molecules.			
9_	Dosimetry is the measurement of (transmitted – absorbed) energy.			
	- (Lungs – Bones) are most susceptible to the effect of acoustic cavitation.			
	B- In blood flow measurement: blood flow is given by $Q = Avcos\theta$. Why large sample volumused? (5 marks)	ne is preferred to be		
SECOND QUESTION (25 marks)				
	A- Write $()$ or (x) and correct the wrong sentence: (20 marks)	(40 111111111111111111111111111111111111		
	I- The sound wave created by vibrating objects propagates through vacuum.	()		
	2- In standing waves, the particle displacement is perpendicular to the direction of wave	• •		
	3- When a dielectric is placed in an electric field, electric charges flow through the mate			
	and become an extra and the contract of the co			
5- On logarithmic scale, a change between two values is based on the difference between them				
	6- The absorption of ultrasound energy by fissues can be expressed in terms of temper of cell damage.	()		
	7- C- mode imaging provides information about the variations in signal amplitude due t	o static objects ()		
		()		
		()		
	9- The speed of sound depends on the density and compressibility.10- When the objects which cause reflection are much greater than the wavelength of the	` '		
	is called Rayleigh scattering.	()		
	B- Which of the following frequencies are higher harmonics of a string with fundamental from (a) 200 Hz (b) 300 Hz (c) 400 Hz (d) 500 Hz (e) 600 Hz. (5 marks)	equency of 150 Hz?		

أمتحان النصف الأول للعام الدراسي ٢٠١٦- ٢٠١٧م (ثانية فزياء)

حامعة طنطا

٣

المادة :- المعادلات التفاضلية + دوال خاصة (١٢١) (MA(٢١٢١)

كلية العلوم قسم الرياضيات

أجب عن الأسئلة التالية:-

السؤال الأول :-

(1) كون المعادلة التفاضلية من العلاقة

حيث أن a,b ثوابت أختيارية $y = ae^x + be^{-2x}$

(2) حل المعادلة التفاضلية غير الخطية

$$x\frac{dy}{dx} + y = xy^3$$

(1) حل المعادلة التفاضلية

$$\frac{2x}{y^3} \frac{dx}{dy} + (\frac{y^2 - 3x^2}{y^4}) = 0$$

(2) أدرس هل المعادلة التفاضلية التالية تامة أم غير تامة ثم أوجد الحل

 $2xydx + (y^2 - 3x^2)dy = 0$

السؤال الثالث :-(1) حل المعادلة التفاضلية التي تؤول إلى المتجاسة

$$\frac{dy}{dx} = \frac{x - y - 2}{x + y}$$

(2) حل المعادلة التفاضلية

 $y'' + 3y' + 2y = 3e^{3x} + (4x+1)$

السؤال الرابع :-(١) حل المعادلة التفاضلية

 $(D^2 + 1)y = \sin 2x + \cos 2x$

(2) حل المعادلة التفاضلية

 $(x^2 - xy + y^2)dx = xydy$

السؤال الخامس :-(١) أوجد قيمة كلا من

(a) $\Gamma(\frac{5}{2})$; $(b)\frac{\Gamma(\frac{5}{2})}{\Gamma(\frac{1}{2})}$, $(b)\frac{\Gamma(10)}{\Gamma(6)}$,

(2) أحسب قيمة التكامل

 $\int_{0}^{\infty} \sqrt{y} e^{-y^{3}} dy.$

أنتهت الأسئلة ونتمني لكم النجاح

アクラン くごしゅいかー くしいかしょ

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

EXAMINATION FOR FRESHMEN (SECOND YEAR) STUDENTS OF PHYSICS &M.SCIENCE & BIOPHYSICS

The state of	EXAMINATION FOR PRESHIVEN (SECOND TEAK) STODE TO STATE OF THE SECOND TEAK)				
4.5	COURSE TITLE:	Vibra	tion and waves (موجات)	COURSE CODE:PH2121	
DATE:	29/12/2016	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS	

Answer The Following Questions

a)	Question: (25 Mark) If the equation of motion of a forced oscillator is given by: $\ddot{x} + 2 \dot{x} + 16 x = 10 \cos(2t)$
	Then:
	i. The resonance frequency of the velocity is equal to
	ii. The maximum value of the velocity amplitude is equal to
	iii. The resonance frequency of the displacement is equal to
b)	- The equation of motion $mx + sx = 0$ applies to a mass m at the center of a light string of length 2L fixed at both ends under a constant tension T. Show that he stiffness s is equal to $\frac{2T}{I}$ and that w 2 = 2T/m L.
cond (Question: (25 Mark)
a)	If the displacement of a simple harmonic motion of a body of one gram mass is given by:
	$x = 5\sin(2t + \frac{\pi}{2}) \text{then}:$
	i. The amplitude of the motion is equal to
	ii. The normal frequency is equal to
	iii. The total energy of the motion is equal to
b)	- The equation of motion of a forced oscillator is given by $mx + rx + sx = F_o e^{iw}$. Find the steady state displacement and the velocity of the given oscillator.
	ريان الرياض الله الله الله الله الله الله الله ال

Third Question:

(25 Mark)

- a) For damping simple harmonic motion verify that the solution $x=(A+B)e^{-\frac{rt}{2m}}$ satisfies the equation $m\ddot{x}+rx+s\dot{x}=0$ when $\frac{r^2}{4m^2}=\frac{s}{m}$
- b) Prove that the energy of a simple harmonic oscillator is constant.

Fourth question:

(25 Mark)

If x and y are the displacements of a coupled oscillator which made of two identical pendulum each having a mass m suspended on a light rigid rod of length L and connected by a light spring of stiffness s. Discuss and drive expressions for these displacements as a function of time, t.

	PROF.DR. G.A.GABALLA	
1		

Tanta University Faculty of Science

Department of Physics

Final First Term Examination

Academic year 2016/2017

Mathematical Physics (1) Course

Course Code: PH 2161

Biophysics

Date: 1/1/2017

Time allowed: 2 hours

Solve the Following Questions:

First Question:

(a) Find the differential equation of the equation

$$y = a\sin(x+b)$$

Where a & b are arbitrary constants.

(b) According to Newton's law of cooling, which states that "The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings". If the temperature of the surroundings is 20°C and the temperature of the body decreases from 100°C to 70°C in 10 minutes. Find an expression of the body temperature as a function of time.

Second Question:

(a) Show that which of the next differential equation is homogeneous, then find its general solution.

$$\cot y dx + x dy = 0$$

$$x^{3} dx + (y+1)^{2} dy = 0$$

$$x \frac{dy}{dx} = y - xe^{y/x}$$

(b) Find the inverse of the matrix

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}.$$

Third Question:

(a) Find the integrating factor of the next differential equation, then find its solution:

$$xdy - (y+1)dx = 0$$

(b) Find the value or values of x which satisfies the equation:

$$\begin{vmatrix} x^2 & x & 1 \\ 4 & 2 & 1 \\ 9 & -3 & 1 \end{vmatrix} = 0$$